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Abstract 

An efficient method based on the utilization of crystal 
symmetry for the interpretation of vector sets of crys- 
tals belonging to space groups of higher symmetry 
than P1 is described. New equality relations between 
atomic position vectors which are sufficient to provi~te 
the possibility of an ambiguous solution are. derived. 
It is proved that for many space groups of the polar 
kind these conditions of ambiguity are necessarily 
satisfied. A complete list of such space groups is given. 

Introduction 

The principles of conventional Patterson methods are 
based on the fact that the Patterson function, in the 
point-atom approximation, can be represented as an 
N-fold image of an N-atom structure (Buerger, 
1959). The problem of the deconvolution of N images 
depends first on the correct selection of a series of 
interatomic vectors, all of which must belong to the 
same image of the structure. It is well known that 
this problem is resolvable in principle (Wrinch, 1939). 
However, the process of recovery of structure is not 
free from ambiguity and this causes problems in the 
determination of crystal structures. On the other 
hand, information about the possibility of an 
ambiguous solution may be of use in the process of 
the correct identification of structural fragments. 

The sufficient conditions for the correct interpreta- 
tion of vector sets of crystals with symmetry P1 and 
P1 were established by Cochran (1958). As a further 
development of this topic we propose a new algorithm 
of vector-set interpretation, which results in the uni- 
form conditions of the ambiguous solutions caused 
by crystal symmetry. 

1. The solution of vector sets by factor-set filtration 

We shall consider crystal structures with point atoms. 
Their space groups are assumed to be different from 
P1. 

Let the symmetry operations of the space group G 
relative to a fixed origin in the crystallographic basis 
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be represented by matrices At - (R t [ t t ) ,  bk, n for 1= 
1 , 2 , . . . ,  L; k =  1 , 2 , . . . ,  K, where R~ is a rotation 
matrix that represents one of the symmetry operations 
of the crystal point group, tt is a translation vector 
associated with Rt, bk is the Bravais-lattice centering 
trai dation vector and n is a vector with integer com- 
ponents. L and K are the numbers of symmetry 
operations and centering translations, respectively. 
Then, relative to one arbitrary point r, the infinite 
array of points {r} = {Rtr+t /+bk +n} forms a regular 
set of symmetry-equivalent points. The set of points 
S(r)--{(Atr+bk)(modl)},  for I = l , 2 , . . . , L ;  k= 
l, 2 , . . . ,  K, belonging to one unit cell, forms a factor 
set of equivalent points. 

Let us consider the crystal structure Q(X) consist- 
ing of N regular sets generated from the set X=  
{rl, r 2 , . . .  , rN} of non-symmetry-equivalent points. 
We suppose that all points of X occupy general posi- 
tions. The set of factor sets, S(X)={S(ri) ,  i= 
1, 2 , . . . ,  N}, will be called the factor basis of the 
structure Q(X). 

The structure Q(X) generates the vector set of inter- 
atomic distances 

V(X) = {(A,r~ + bk) -- (Aprj + bq)(mod 1)} (1.1) 

for 1, p = l ,  2, . . . ,  L; k, q = l ,  2, . . . ,  K; i, j =  
1 , 2 , . . . ,  N. It follows from (1.1) that V(X) is the 
superposition of L K N  copies of the factor basis S(X), 
but each copy is shifted at different positional vectors, 
i.e. 

V(X) = {S(X) O (Asr, + bk)(mod !)}. (1.2) 

Alternatively, V(X) can be regarded as the shift super- 
position of L K N  copies of the inverse factor basis 
S(-X) ,  i.e. 

V(X) = {(A~ri + bk) C) S(X)(mod 1)}. (1.3) 

(Here and below the signs • and O indicate the 
operations of direct sum and difference of vector sets, 
respectively.) 

Since V(X) contains a copy of S(X)Ori (modl) ,  
then 

S(X)c  V(X) @r,(mod 1), 
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i.e. the vector set V(X), shifted at the positional vector 
r~, contains an exact copy of the initial factor basis 
S(X). Hence the factor basis of crystal structure Q(X) 
can be recovered from V(X)®r*(modl ) ,  r*~X,  by 
selection of all the factor sets associated with a given 
group of symmetry transformations. The algorithm 
will be called Sfiltration. Fig. 1 illustrates the use of 
the S-filtration algorithm for the solution of a vector 
set of the model structure with symmetry pmm. 

Note that V(X)Gri (mod 1) can contain ghost factor 
sets which do not belong to S(X). The appearance of 
ghost factor sets can be explained by accidental com- 
binations of the interatomic vectors in V(X) 
(Simonov, Soldatenkov & Shchedrin, 1969). 

2. Investigation of  the ambiguous solutions of  vector 
sets 

Let fI(G) be a set of shift vectors into equivalent 
origin (EO vectors). It is known that EO vectors to, 
to ~ I-Z(G), are the solutions of the set of equations 

( R t - I ) .  to = n +  v b  k (2.1) 

for l - - 1 , 2 , . . . , L ;  k = l , 2 , . . . , K ;  v - -0 ,1 ,  where I 
is the identity transformation. The complete list of 
EO vectors for all space groups is given by Giacovazzo 
(1974). Note that EO vectors form discrete sets except 
for space groups of the polar kind. In these groups 
they form one- or two-dimensional manifolds. 

Let us prove the following statement. 
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Fig. 1. Illustration of the idea of vector set interpretation by the 
S-filtration method. (a) The point atomic structure X(rt,  r2) with 
symmetry prom. ® and @ denote the factor sets S(rl) and S(r2) 
of the symmetry-equivalent positions of two basic atoms, respec- 
tively. (b) The vector set V(X) of the structure X(rl,r2). The 
dashed lines restrict the vector set V ( X ) ~ r  t (mod !). The initial 
structure can be obtained by selecting from V(X)~r l (mod  1) the 
vectors which compose the factor sets with symmetry pmm. 

Z e m m a  " 

S(to + r) = to@ S(r)(mod !) (2.2) 

is valid for every vector to, toe  ~ ( G ) ,  and every 
vector r. 

Proof: Bearing in mind that Al(to + r) = Rtto + Air 
is true for every transformation At, At ~ G, and taking 
into account (2.1), we immediately obtain (2.2). It 
follows from (2.2) that while, in general, the factor 
sets S(r) and S( r+ to)  (viewed from one fixed origin) 
are not isometrically equivalent, their vector sets are 
always homometric. We shall see that it is just the 
specific property of EO vectors that leads to regular 
ambiguities. 

Theorem: If some EO vector to, to ¢ f l (G),  connects 
two atomic positions ri and Atrj + bk by the relation 

r iT (A/rj + bk)(mod !) = to, (2.3) 

then V(X)03ri(mod 1) contains also the factor b a s i s  

S ( toQX)  = {S( to+r , ) ,  n = 1 , 2 , . . .  N}. 

Proof: Since S(X)@(Atr j+bk)(mod !) is also con- 
tained in V(X), then under condition (2.3) and 
because of the property (2.2) we have 

S(X) 0 (Atrj + bk)@ r,(mod 1) = S(to@ X). 

Similarly, if we take the copy (At r j+bk)G 
S(X)(mod 1), then we have 

ri0) (A/rj + bk) Q S(X)(mod 1) = S(toG X). 

According to this result the following three cases 
should be distinguished: 

(i) The condition (2.3) can be satisfied for sym- 
metry-equivalent points (e.g. for r~ and Azr~ +bk),  i.e. 

rl =t= (A/rl + bk)(mod i) = to. (2.4) 

In this case the solution will be obtained as a super- 
position of 2 N - 1  factor sets, namely 

S ( t o  -t- r N ), • • • , S ( t o  + r2), S(rl), S(r2),. • •, S(r N ) 
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and/or 

S(~ - r N  ) , . . . ,  S(~o -r2),  S(r,), S ( r2) , . . . ,  S(rN ). 

Thus the condition (2.4) restricts the choice of atomic 
position vectors for shifting the vector sets. Fig. 2 
illustrates such an ambiguity of solution. 

(ii) The condition (2.3) can be satisfied for non- 
symmetry-equivalent points (e.g. for r~ and A~rj + b k ,  
j #  1). Here the ambiguous solution will also be 
obtained as in the previous case. However, the fact 
of ambiguity can be established only a posteriori. 
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Fig. 2. The ambiguous solution of the vector set due to the special 
position of one basic atom. (a) Two factor sets S(rl) and S(r2) 
of the point atomic structure X(rt, r2) with symmetry prom. The 
shift vector into the equivalent origin, to1 = (½, 0), connects two 
symmetry-equivalent positions. (b) The vector set V(X) of the 
structure X(r~,rz). The vector set V(X)Gr~ (modl )  contains 
three factor sets with symmetry prom. ® and @ denote the points 
of the original factor sets S(r~) and S(r2), respectively. @ denotes 
the points of the additional factor set S(tot + r2). 

(iii) There are groups G~ among the polar space 
groups (with continuous sets of EO vectors) for which 
the sum of the identity operator I and some operator 
At =- (Rt I tt), A~ ~ G~, is the projection operator onto 
I~(G,,) ,  i.e. 

( l+Rt ) r+ t t (mod  1) = o~r, rare [~(G~). 

In this case the equality 

rO AtrOS(X)(mod !) = S(~or (~X ) 

is valid for any positional vector. Therefore, two 
homometric factor bases, namely S(X) and its shift- 
enantiomorphic copy S(tor@ X) will be systematically 
recovered from the vector sets of structures with this 
kind of symmetry. A complete list of these groups is 
given in Table 1. An example of the enantiomorphous 
ambiguity is shown in Fig. 3. 
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Fig. 3. Illustration of the enant iomorphous ambiguity due to crys- 
tal symmetry of the polar kind. (a) The point atomic structure 
X(rl, r2, r3, r4) with symmetry pro. (b) The vector set V(X) of 
the structure X(rt, r2, r3,r4). The vector set V(X)Gr~(mod i) 
contains the twofold image of the initial structure. 
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Table l. List of  crystal space groups 
enantiomorphous ambiguity 

Crystal system Space groups 
Monoclinic P2, B2, C2, P21, Pro, Brn, Cm, Pb, Pc, Bb, Cc 

Orthorhombic Pmrn2, Atom2, Cmm2, From2, lmrn2, Pmc2t, Cmc21, 
Pcc2, Ccc2, Pma2, Area2, lma2, Pca2t, Pnc2, Pmn21, 
Pba2, Aba2, Pna21, lba2, Pan2, Abm2, Fdd2 

P4, I4, P4t, 141, P42, P43, P4mm, 14ram, P4bm, 
P42cm , P42nm, P4cc, P4nc, P42mc , P42bc , 14cm, 
14tmd, I4tcd 

P6, P6t, P62, P63, P64, P65, P6mm, P6cc, P63cm , 
P63mc 

Tetragonal 

Hexagonal 

with the 

Concluding remarks 

For the practical application of the proposed method 
it is necessary to know at least one atomic position. 
This problem can be solved by the trial-and-error 
method 

rt--> S(rt)--> V[S(rt)] 

and if V[S(rt)] c V(X), then rt ~ X. Note that the vec- 
tor sets of the factor sets S(r) and S(o~-r ) ,  as we 
have already mentioned, are always homometric. 
Therefore the scanning area for the trial vectors r, 
should cover, in general, only the 1 / ( L K M ) t h  part 

of the unit cell, where L is the number of symmetry 
operations, K is the number of centering translations, 
and M is the number of EO vectors. 

The application of the S-filtration method is 
especially effective for crystals with heavy atoms and 
high-order symmetries. Serious problems arise for 
so-called difficult structures, when the crystal sym- 
metry belongs to polar space groups (except for the 
trigonal system; see Table 1). In this case either 
Patterson or conventional direct methods would pro- 
vide an ambiguous solution in which the true structure 
and its enantiomorph are superimposed. This 
obstructs the solution of the structures. Special 
methods have been proposed to overcome this 
obstacle. For a detailed discussion on this topic, the 
reader is referred to the paper by Fan Hai-fu (1984). 
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Abstract 
For X-ray diffraction by a pure low-angle twist boun- 
dary perpendicular to a crystal surface, within the 
framework of the kinematic and dynamical theories, 
the following integral characteristics are calculated: 
(a) the bicrystal reflectivity in the vicinity of the lth 
reflection; (b) the integrated intensity of the lth reflec- 
tion; (c) the bicrystal total reflectivity, i.e. the sum of 
the integrated intensities over all reflections. The case 
for even h.  b (b is the diffraction vector, b is the 
Burgers vector of the boundary screw dislocations) 
is considered. In dynamical theory an increase of the 
total reflectivity of a bicrystal due to the boundary 
dislocation structure is obtained. 
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1. Introduction 
Diffraction methods have been successfully used in 
studies of the structure of grain boundaries. A detailed 
presentation of the results of such studies performed 
by the use of X-ray and electron diffraction was given 
in the review paper of Sass (1980). The use of X- 
radiation is greatly preferable, firstly because it lacks 
double diffraction, which complicates the diffraction 
pattern, and secondly because it enables the investiga- 
tion of relatively thick samples. X-ray diffraction 
studies of bicrystal block boundaries were carried out 
for the case when the boundary plane is parallel to 
the crystal surface. Both the high-angle and low-angle 
twist boundaries were investigated by Guan & Sass 
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